Thursday, June 11, 2015

CCR5 Delta 32 Deletion more diseases caused by this mutation.





  1. Akcay A, Nguyen Q, Edelstein CL (2009) Mediators of inflammation in acute kidney injury. Mediat Inflamm 2009:137072. doi:10.​1155/​2009/​137072 View Article
  2. Albelda SM, Smith CW, Ward PA (1994) Adhesion molecules and inflammatory injury. FASEB J 8(8):504–512PubMed
  3. Anders HJ, Vielhauer V, Frink M et al (2002) A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. J Clin Invest 109(2):251–259. doi:10.​1172/​JCI14040 PubMed CentralPubMedView Article
  4. Barcellos LF, Schito AM, Rimmler JB et al (2000) CC-chemokine receptor 5 polymorphism and age of onset in familial multiple sclerosis. Multiple sclerosis genetics group. Immunogenetics 51(4–5):281–288PubMedView Article
  5. Broide DH, Humber D, Sullivan S, Sriramarao P (1998) Inhibition of eosinophil rolling and recruitment in P-selectin- and intracellular adhesion molecule-1-deficient mice. Blood 91(8):2847–2856PubMed
  6. Coenen M, Nattermann J (2010) The role of CCR5 in HCV infection. Eur J Med Res 15(3):97–101PubMed CentralPubMedView Article
  7. Cunningham PN, Dyanov HM, Park P, Wang J, Newell KA, Quigg RJ (2002) Acute renal failure in endotoxemia is caused by TNF acting directly on TNF receptor-1 in kidney. J Immunol 168(11):5817–5823PubMedView Article
  8. Cunningham PN, Wang Y, Guo R, He G, Quigg RJ (2004) Role of Toll-like receptor 4 in endotoxin-induced acute renal failure. J Immunol 172(4):2629–2635PubMedView Article
  9. Dawson TC, Beck MA, Kuziel WA, Henderson F, Maeda N (2000) Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus. Am J Pathol 156(6):1951–1959. doi:10.​1016/​S0002-9440(10)65068-7 PubMed CentralPubMedView Article
  10. Day YJ, Huang L, Ye H, Linden J, Okusa MD (2005) Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages. Am J Physiol Renal Physiol 288(4):F722–F731. doi:10.​1152/​ajprenal.​00378.​2004 PubMedView Article
  11. Dong Z, Atherton SS (2007) Tumor necrosis factor-alpha in cisplatin nephrotoxicity: a homebred foe? Kidney Int 72(1):5–7. doi:10.​1038/​sj.​ki.​5002320 PubMedView Article
  12. Fadel SA, Bromley SK, Medoff BD, Luster AD (2008) CXCR3-deficiency protects influenza-infected CCR5-deficient mice from mortality. Eur J Immunol 38(12):3376–3387. doi:10.​1002/​eji.​200838628 PubMed CentralPubMedView Article
  13. Fantuzzi G, Zheng H, Faggioni R et al (1996) Effect of endotoxin in IL-1 beta-deficient mice. J Immunol 157(1):291–296PubMed
  14. Fattori E, Della Rocca C, Costa P et al (1994) Development of progressive kidney damage and myeloma kidney in interleukin-6 transgenic mice. Blood 83(9):2570–2579PubMed
  15. Faubel S, Ljubanovic D, Reznikov L, Somerset H, Dinarello CA, Edelstein CL (2004) Caspase-1-deficient mice are protected against cisplatin-induced apoptosis and acute tubular necrosis. Kidney Int 66(6):2202–2213. doi:10.​1111/​j.​1523-1755.​2004.​66010.​x PubMedView Article
  16. Furuichi K, Wada T, Iwata Y et al (2003) CCR2 signaling contributes to ischemia-reperfusion injury in kidney. J Am Soc Nephrol 14(10):2503–2515PubMedView Article
  17. Furuichi K, Gao JL, Horuk R, Wada T, Kaneko S, Murphy PM (2008) Chemokine receptor CCR1 regulates inflammatory cell infiltration after renal ischemia-reperfusion injury. J Immunol 181(12):8670–8676PubMed CentralPubMedView Article
  18. Gadient RA, Patterson PH (1999) Leukemia inhibitory factor, Interleukin 6, and other cytokines using the GP130 transducing receptor: roles in inflammation and injury. Stem Cells 17(3):127–137. doi:10.​1002/​stem.​170127PubMedView Article
  19. Homsi E, Ribeiro-Alves MA, Lopes de Faria JB, Dias EP (2002) Interleukin-6 stimulates tubular regeneration in rats with glycerol-induced acute renal failure. Nephron 92(1):192–199PubMedView Article
  20. Jo SK, Cho WY, Sung SA, Kim HK, Won NH (2005) MEK inhibitor, U0126, attenuates cisplatin-induced renal injury by decreasing inflammation and apoptosis. Kidney Int 67(2):458–466. doi:10.​1111/​j.​1523-1755.​2005.​67102.​x PubMedView Article
  21. Kayama F, Yoshida T, Elwell MR, Luster MI (1995) Cadmium-induced renal damage and proinflammatory cytokines: possible role of IL-6 in tubular epithelial cell regeneration. Toxicol Appl Pharmacol 134(1):26–34. doi:10.​1006/​taap.​1995.​1165 PubMedView Article
  22. Kelly KJ, Williams WW Jr, Colvin RB, Bonventre JV (1994) Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury. Proc Natl Acad Sci U S A 91(2):812–816PubMed CentralPubMedView Article
  23. Knotek M, Rogachev B, Wang W et al (2001) Endotoxemic renal failure in mice: role of tumor necrosis factor independent of inducible nitric oxide synthase. Kidney Int 59(6):2243–2249. doi:10.​1046/​j.​1523-1755.​2001.​00740.​xPubMedView Article
  24. Lee YK, Kwak DH, Oh KW et al (2009) CCR5 deficiency induces astrocyte activation, Abeta deposit and impaired memory function. Neurobiol Learn Mem 92(3):356–363. doi:10.​1016/​j.​nlm.​2009.​04.​003 PubMedView Article
  25. Li L, Huang L, Sung SS et al (2007) NKT cell activation mediates neutrophil IFN-gamma production and renal ischemia-reperfusion injury. J Immunol 178(9):5899–5911PubMedView Article
  26. Linas SL, Shanley PF, Whittenburg D, Berger E, Repine JE (1988) Neutrophils accentuate ischemia-reperfusion injury in isolated perfused rat kidneys. Am J Physiol 255(4 Pt 2):F728–F735PubMed
  27. Mehta RL, Kellum JA, Shah SV et al (2007) Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11(2):R31. doi:10.​1186/​cc5713 PubMed CentralPubMedView Article
  28. Meldrum KK, Meldrum DR, Hile KL et al (2001) p38 MAPK mediates renal tubular cell TNF-alpha production and TNF-alpha-dependent apoptosis during simulated ischemia. Am J Physiol Cell Physiol 281(2):C563–C570PubMed
  29. Messmer UK, Briner VA, Pfeilschifter J (1999) Tumor necrosis factor-alpha and lipopolysaccharide induce apoptotic cell death in bovine glomerular endothelial cells. Kidney Int 55(6):2322–2337. doi:10.​1046/​j.​1523-1755.​1999.​00473.​xPubMedView Article
  30. Mishima K, Baba A, Matsuo M, Itoh Y, Oishi R (2006) Protective effect of cyclic AMP against cisplatin-induced nephrotoxicity. Free Radic Biol Med 40(9):1564–1577. doi:10.​1016/​j.​freeradbiomed.​2005.​12.​025 PubMedView Article
  31. Moreno C, Gustot T, Nicaise C et al (2005) CCR5 deficiency exacerbates T-cell-mediated hepatitis in mice. Hepatology 42(4):854–862. doi:10.​1002/​hep.​20865 PubMedView Article
  32. Patel NS, Chatterjee PK, Di Paola R et al (2005) Endogenous interleukin-6 enhances the renal injury, dysfunction, and inflammation caused by ischemia/reperfusion. J Pharmacol Exp Ther 312(3):1170–1178. doi:10.​1124/​jpet.​104.​078659PubMedView Article
  33. Perez de Lema G, Maier H, Franz TJ et al (2005) Chemokine receptor Ccr2 deficiency reduces renal disease and prolongs survival in MRL/lpr lupus-prone mice. J Am Soc Nephrol 16(12):3592–3601. doi:10.​1681/​ASN.​2005040426PubMedView Article
  34. Ramesh G, Reeves WB (2002) TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest 110(6):835–842. doi:10.​1172/​JCI15606 PubMed CentralPubMedView Article
  35. Ramesh G, Reeves WB (2003) TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am J Physiol Renal Physiol 285(4):F610–F618. doi:10.​1152/​ajprenal.​00101.​2003 PubMedView Article
  36. Ramesh G, Reeves WB (2005) p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. Am J Physiol Renal Physiol 289(1):F166–F174. doi:10.​1152/​ajprenal.​00401.​2004 PubMedView Article
  37. Ramesh G, Kimball SR, Jefferson LS, Reeves WB (2007) Endotoxin and cisplatin synergistically stimulate TNF-alpha production by renal epithelial cells. Am J Physiol Renal Physiol 292(2):F812–F819. doi:10.​1152/​ajprenal.​00277.​2006PubMedView Article
  38. Remick DG, Newcomb DE, Bolgos GL, Call DR (2000) Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock 13(2):110–116PubMedView Article
  39. Russell JA, Singer J, Bernard GR et al (2000) Changing pattern of organ dysfunction in early human sepsis is related to mortality. Crit Care Med 28(10):3405–3411PubMedView Article
  40. Rybak SL, Murphy RF (1998) Primary cell cultures from murine kidney and heart differ in endosomal pH. J Cell Physiol 176(1):216–222. doi:10.​1002/​(SICI)1097-4652(199807)176:​1<216:​AID-JCP23>3.​0.​CO PubMedView Article
  41. Samson M, Labbe O, Mollereau C, Vassart G, Parmentier M (1996) Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry 35(11):3362–3367. doi:10.​1021/​bi952950g PubMedView Article
  42. Schrier RW, Wang W (2004) Acute renal failure and sepsis. N Engl J Med 351(2):159–169. doi:10.​1056/​NEJMra032401351/​2/​159 PubMedView Article
  43. Segerer S, Nelson PJ, Schlondorff D (2000) Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol 11(1):152–176PubMed
  44. Segerer S, Banas B, Wornle M et al (2004) CXCR3 is involved in tubulointerstitial injury in human glomerulonephritis. Am J Pathol 164(2):635–649. doi:10.​1016/​S0002-9440(10)63152-5 PubMed CentralPubMedView Article
  45. Sorce S, Bonnefont J, Julien S et al (2010) Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5. Br J Pharmacol 160(2):311–321. doi:10.​1111/​j.​1476-5381.​2010.​00697.​x PubMed CentralPubMedView Article
  46. Turner JE, Paust HJ, Steinmetz OM et al (2008) CCR5 deficiency aggravates crescentic glomerulonephritis in mice. J Immunol 181(9):6546–6556PubMedView Article
  47. Turner JE, Paust HJ, Bennstein SB et al (2012) Protective role for CCR5 in murine lupus nephritis. Am J Physiol Renal Physiol 302(11):F1503–F1515. doi:10.​1152/​ajprenal.​00382.​2011 PubMedView Article
  48. Wang W, Faubel S, Ljubanovic D et al (2005) Endotoxemic acute renal failure is attenuated in caspase-1-deficient mice. Am J Physiol Renal Physiol 288(5):F997–F1004. doi:10.​1152/​ajprenal.​00130.​2004 PubMedView Article
  49. Xu C, Chang A, Hack BK, Eadon MT, Alper SL, Cunningham PN (2014) TNF-mediated damage to glomerular endothelium is an important determinant of acute kidney injury in sepsis. Kidney Int 85(1):72–81. doi:10.​1038/​ki.​2013.​286 PubMedView Article
  50. Yanaba K, Mukaida N, Matsushima K, Murphy PM, Takehara K, Sato S (2004) Role of C-C chemokine receptors 1 and 5 and CCL3/macrophage inflammatory protein-1alpha in the cutaneous Arthus reaction: possible attenuation of their inhibitory effects by compensatory chemokine production. Eur J Immunol 34(12):3553–3561. doi:10.​1002/​eji.​200425426 PubMedView Article
  51. Zhang D, Li Y, Liu Y, Xiang X, Dong Z (2013) Paclitaxel ameliorates lipopolysaccharide-induced kidney injury by binding myeloid differentiation protein-2 to block Toll-like receptor 4-mediated nuclear factor-kappaB activation and cytokine production. J Pharmacol Exp Ther 345(1):69–75. doi:10.​1124/​jpet.​112.​202481 PubMed CentralPubMedView Article